Crypto for Cripto Computational Number Theory: Certifying Giant Nonprimes

Charlotte Hoffmann¹, Pavel Hubáček², Chethan Kamath³,

Krzysztof Pietrzak¹

¹Institute of Science and Technology Austria ²Charles University, Faculty of Mathematics and Physics ³Tel Aviv University

Giant Prime Numbers

- GIMPS and PrimeGrid: large-scale projects dedicated to searching giant prime numbers
- Expensive p Mersenne) et cov

- Prevent che
 - Double ch
 - Cryptograthe

PrimeGrid Mega Primes Page 1 of 2 > Last page

	age to the same page											
_			Prime	Digits	Discoverer	Team	Date					
		1	10223*2^31172165-1	9,383,761 (decimal)	SyP_primes)		2016-10- 31 22:13:54 UTC					
	d BOINC ion	2	1963736^1048576+1	6,598,776 (decimal)	tng (primes)	Antarctic Crunchers	2022-09- 24 15:01:43 UTC					
		3	1951734^1048576+1	6,595,985 (decimal)	apophise@jisaku (primes)	Team 2ch	2022-08- 09 11:56:02 UTC					
		4	202705*2^21320516+1	6,418,121 (decimal)	Pavel Atnashev (primes)	Ural Federal University	2021-11- 25 03:19:26 UTC					

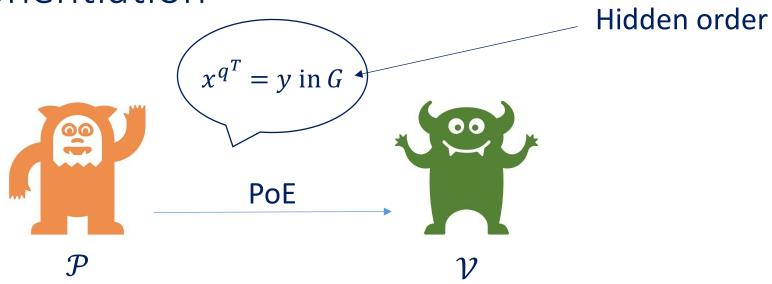
Proth,

Proth Numbers

 $N = k2^n + 1$ $n \in \mathbb{N}, k < 2^n \text{ odd}$

 $\frac{\text{Proth's Theorem}}{\text{For all x quadratic non-residue mod } N:}$ $N \text{ prime} \Leftrightarrow x^{k2^{n-1}} = -1 \mod N$

Proofs of Exponentiation



- If $\operatorname{ord}(G)$ is known: \mathcal{P} and \mathcal{V} compute $e \coloneqq q^T \mod \operatorname{ord}(G)$ and x^e
- \mathcal{P} performs T sequential exponentiations

$$x \to x^q \to x^{q^2} \to x^{q^3} \to \cdots \to x^{q^T}$$

• Cost of computing and verifying the proof $\ll T$

PoEs for (Non-)Primality Certificates?

Proth's Thm:
$$N = k2^n + 1$$

N prime $\Leftrightarrow x^{k2^{n-1}} = -1 \mod N$

- GIMPS and PrimeGrid deployed Pietrzak's PoE to certify primality test
- BUT: Pietrzak's PoE constructed for hidden order groups
- Here: order of \mathbb{Z}_N^* known for *N* prime
- \rightarrow Attack!

Our contribution

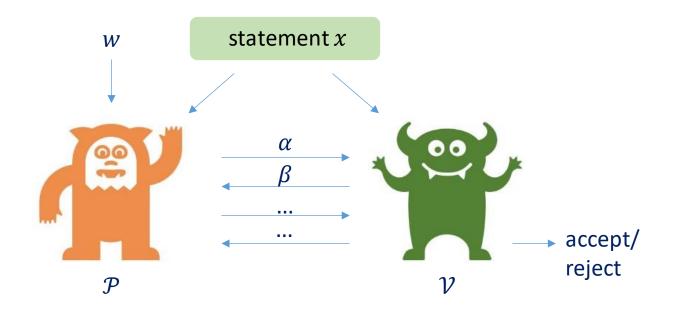
Statistically sound certificate of **non-primality** for **Proth numbers** that

- reduces the complexity of double checking from n to $O(\lambda \log n)$
- increases the complexity of the currently deployed (not cryptographically sound) protocol by multiplicative factor 2

Technical Overview

- 1. Pietrzak's PoE
- 2. An attack in Proth number groups
- 3. Our protocol

Interactive Protocols



- Soundness: If statement is false, \mathcal{V} rejects w.h.p. for every malicious \mathcal{P}
- **Completeness:** If statement is correct and \mathcal{P} is honest, \mathcal{V} accepts w.h.p.

Pietrzak's PoE [Pie19]

$$x^{2^{T}} = y$$

$$g_{1} = x^{2^{T/2}}$$

$$(x^{2^{T/2}} = g_{1}) \times g_{1}^{2^{T/2}} = y$$

$$r \leftarrow \$$$

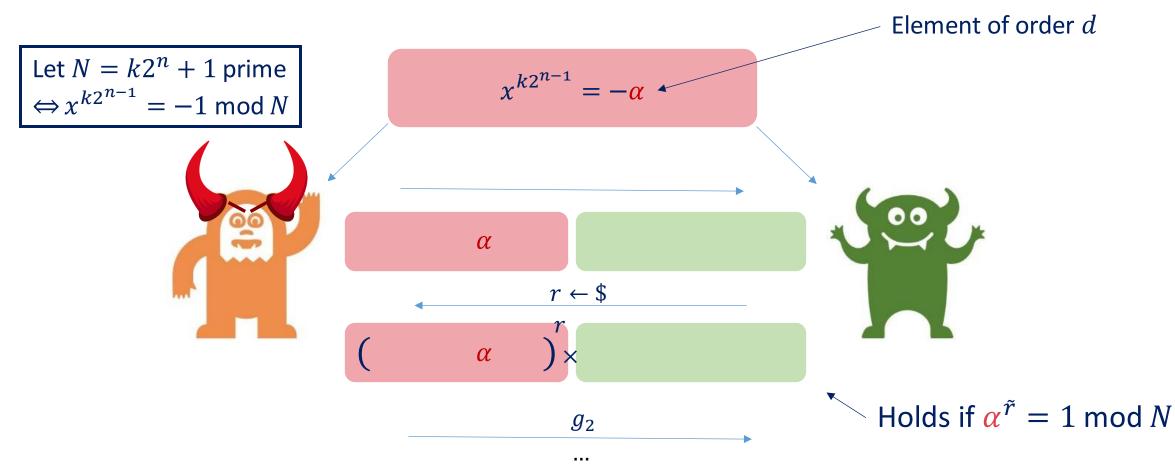
$$(x^{r}g_{1})^{2^{T/2}} = yg_{1}^{r}$$

$$g_{2}$$
...

 $\tilde{x}^2 = \tilde{y}? \rightarrow \text{accept/reject}$

Can be made non-interactive using Fiat-Shamir.

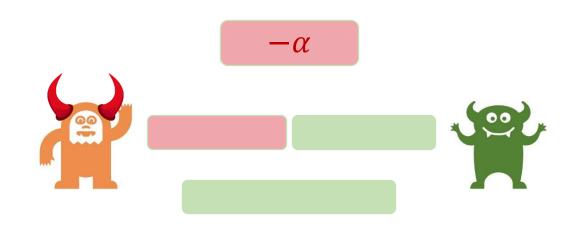
The Attack [BBF18]



 \rightarrow Pr[\mathcal{V} accepts that N is composite] $\geq 1/d$

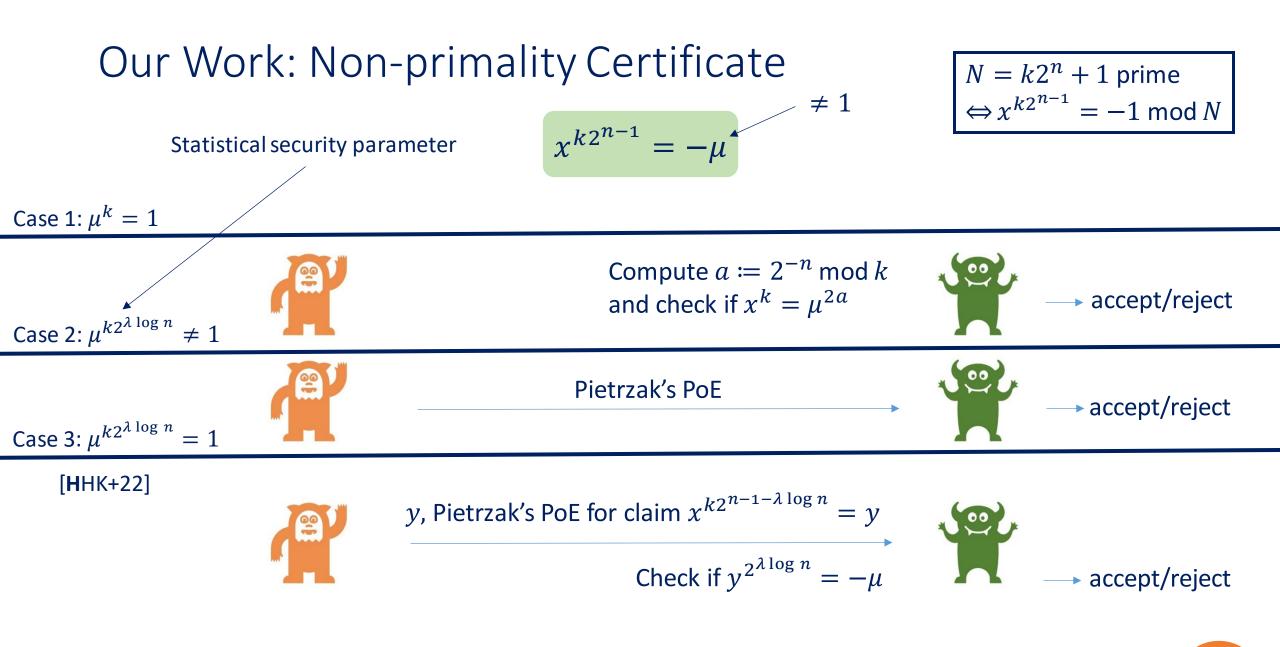
Our Work: Observations

$$N = k2^{n} + 1 \text{ prime}$$
$$\Leftrightarrow x^{k2^{n-1}} = -1 \mod N$$



Observations:

- $\mathcal V$ only needs to exclude that the correct result is -1
- Success probability of attack depends on order of α
- The order of α divides $N 1 = k2^n$ if N prime
- $\rightarrow \mathcal{V}$ can check if the order of α is "too small"



Summary and Open Problems

weeks

Questions?

Approach	Sound?	Prover's Complexity	Prover's Space	Verifier's Complexity	Proof Size
Double checking	yes	0	0	n	0
Pietrzak's PoE in \mathbb{Z}_N^*	no	$2\sqrt{n}$	\sqrt{n}	$3\lambda \log n$	logn
Our work	yes	$2\log k + \lambda \log n + 2\sqrt{n}$	\sqrt{n}	$\log k + 5\lambda \log n$	$\log n + 1$

- We construct non-primality certificate for Proth number $k2^n + 1$ hours
- Open: Construct cryptographically sound certificate of **primality**
- Open: Certificates of (non-)primality for other types of numbers such as Mersenne numbers $2^n 1$