Crypto for Crinto Computational Number Theory: Certifying Giant Nonprimes

Charlotte Hoffmann ${ }^{1}$, Pavel Hubáček ${ }^{2}$, Chethan Kamath ${ }^{3}$, Krzysztof Pietrzak ${ }^{1}$
${ }^{1}$ Institute of Science and Technology Austria
${ }^{2}$ Charles University, Faculty of Mathematics and Physics
${ }^{3}$ Tel Aviv University

Giant Prime Numbers

- GIMPS and PrimeGrid: large-scale projects dedicated to searching giant prime numbers
- Expensive rimearid Proth, Mersenne)
ect cover running costs for this month
- Prevent ch primegrid Meas Prines
- Double ck
- Cryptogrē ${ }_{\text {tre }}$ Page 1 of $2>$ Last page

	Prime	Digits	Discoverer	Team	Date
1	$10223 * 2 \wedge 31172165-1$	$\begin{aligned} & \text { 9,383,761 } \\ & \text { (decimal) } \end{aligned}$	SyP primes)		$\begin{aligned} & 2016-10- \\ & 31 \\ & 22: 13: 54 \\ & \text { UTC } \end{aligned}$
2	1963736^1048576+1	$\begin{aligned} & \text { 6,598,776 } \\ & \text { (decimal) } \end{aligned}$	tng (primes)	Antarctic Crunchers	$\begin{aligned} & 2022-09- \\ & 24 \\ & 15: 01: 43 \\ & \text { UTC } \end{aligned}$
3	1951734^1048576+1	$\begin{aligned} & \text { 6,595,985 } \\ & \text { (decimal) } \end{aligned}$	apophise@jisaku (primes)	Team 2ch	$\begin{aligned} & 2022-08- \\ & 09 \\ & 11: 56: 02 \\ & \text { UTC } \end{aligned}$
4	202705*2^21320516+1	$\begin{aligned} & \text { 6,418,121 } \\ & \text { (decimal) } \end{aligned}$	Pavel Atnashev (primes)	Ural Federal University	$\begin{aligned} & 2021-11- \\ & 25 \\ & 03: 19: 26 \\ & \text { UTC } \end{aligned}$

Proth Numbers

$$
\begin{gathered}
\boldsymbol{N}=\boldsymbol{k} 2^{n}+\mathbf{1} \\
n \in \mathbb{N}, k<2^{n} \text { odd }
\end{gathered}
$$

Proth's Theorem

For all x quadratic non-residue $\bmod N$:
N prime $\Leftrightarrow x^{k 2^{n-1}}=-1 \bmod N$

Proofs of Exponentiation

- If ord (G) is known: \mathcal{P} and \mathcal{V} compute $e:=q^{T} \bmod \operatorname{ord}(G)$ and x^{e}
- \mathcal{P} performs T sequential exponentiations

$$
x \rightarrow x^{q} \rightarrow x^{q^{2}} \rightarrow x^{q^{3}} \rightarrow \cdots \rightarrow x^{q^{T}}
$$

- Cost of computing and verifying the proof $\ll T$

PoEs for (Non-)Primality Certificates?

$$
\begin{aligned}
\text { Proth's Thm: } N & =k 2^{n}+1 \\
N \text { prime } \Leftrightarrow x^{k 2^{n-1}} & =-1 \bmod N
\end{aligned}
$$

- GIMPS and PrimeGrid deployed Pietrzak's PoE to certify primality test
- BUT: Pietrzak's PoE constructed for hidden order groups
- Here: order of \mathbb{Z}_{N}^{*} known for N prime
\rightarrow Attack!

Our contribution

Statistically sound certificate of non-primality for Proth numbers that

- reduces the complexity of double checking from n to $O(\lambda \log n)$
- increases the complexity of the currently deployed (not cryptographically sound) protocol by multiplicative factor 2

Technical Overview

Plan

1. Pietrzak's PoE
2. An attack in Proth number groups
3. Our protocol

Interactive Protocols

- Soundness: If statement is false, \mathcal{V} rejects w.h.p. for every malicious \mathcal{P}
- Completeness: If statement is correct and \mathcal{P} is honest, \mathcal{V} accepts w.h.p.

Pietrzak's PoE [Pie19]

$$
\tilde{x}^{2}=\tilde{y} ? \rightarrow \text { accept } / \text { reject }
$$

Can be made non-interactive using Fiat-Shamir.

The Attack [BBF18]

Element of order d

Our Work: Observations

Observations:

- \mathcal{V} only needs to exclude that the correct result is -1
- Success probability of attack depends on order of α
- The order of α divides $N-1=k 2^{n}$ if N prime
$\rightarrow \mathcal{V}$ can check if the order of α is "too small"

Our Work: Non-primality Certificate

Statistical security parameter

$N=k 2^{n}+1$ prime
$\Leftrightarrow x^{k 2^{n-1}}=-1 \bmod N$

Case 1: $\mu^{k}=1$

[HHK+22]

$$
y \text {, Pietrzak's PoE for claim } x^{k 2^{n-1-\lambda \log n}}=y
$$

$$
\text { Check if } y^{2^{\lambda \log n}=-\mu}
$$

accept/reject

Summary and Open Problems

Approach	Sound?	Prover's Complexity	Prover's Space	Verifier's Complexity	Proof Size
Double checking	yes	0	0	n	0
Pietrzak's PoE in \mathbb{Z}_{N}^{*}	no	$2 \sqrt{n}$	\sqrt{n}	$3 \lambda \log n$	$\log n$
Our work	yes	$2 \log k+\lambda \log n+2 \sqrt{n}$	\sqrt{n}	$\log k+5 \lambda \log n$	$\log n+1$

- We construct non-primality certificate for Proth number $k 2^{n}+1$
- Open: Construct cryptographically sound certificate of primality
- Open: Certificates of (non-)primality for other types of numbers such as Mersenne numbers $2^{n}-1$

Questions?

